Reg.No.:				
----------	--	--	--	--

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 7038

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS – AUG. / SEP. 2023

Second Semester

Electronics and Communication Engineering

U19EC201-ELECTRIC CIRCUIT THEORY

(Regulation 2019)

(Common to Biomedical Engineering)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

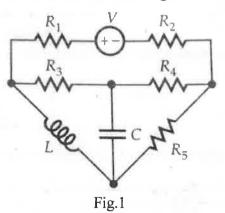
PART - A

Q.No.

Questions

 $(10 \times 2 = 20 \text{ Marks})$

Marks 2

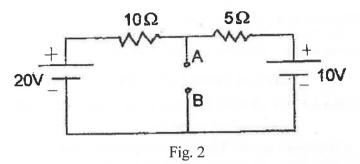

CO

Draw the dual of the network shown in Fig.1 1.

KL

CO₁

K1



- 2. State supernode. Draw the circuit as an example and mention supernode region.
- K2 CO₁
- 3. Compare Star and Delta transformation with necessary circuits.

2

2

4. Determine Norton's equivalent circuit at terminals AB for the circuit 2 K2 CO2 shown in Fig. 2

- 5. A resistor having a resistance of 10Ω and an unknown capacitor are in series. The voltage across the resistor is V_R = $40 sin (1000t + 45^0)$. If the current leads the applied voltage by 45^0 , determine the unknown capacitance.
- 2 K2 CO3
- 6. How do we apply dot convention in circuit analysis? Give one 2 example circuit.
- 7. Recall the expressions for the time constant of RL and RC circuits.
 - 2 K1 CO4

K2

CO3

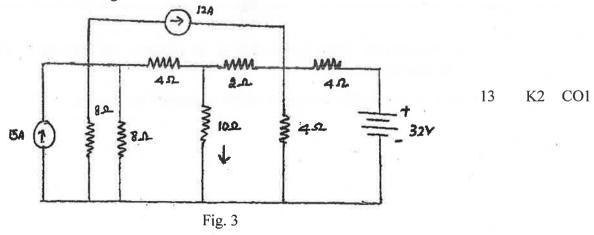
8. Define transient time.

- 2 K1 CO4
- 9. Recall the condition of reciprocity for the h- and y- parameters.
- K1 CO5

10. The port currents of a two-port network are given by

2 K2 CO5

2


$$I_1=2.5V_1-1.5V_2$$

 $I_2=-V_1+7V_2$

Obtain the admittance parameters for the above network.

PART-B

Q.No. $(5 \times 13 = 65 \text{ Marks})$ Marks KL CO

11. a) Determine the power dissipated in the 10Ω resistor using KCL for the circuit shown in Fig. 3

b) i. Apply KVL to find mesh currents, I_{L1} , I_{L2} , and I_{L3} for the network 8 K2 CO1 shown in Fig. 4.

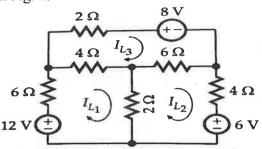


Fig. 4

- ii. Explain the concept of f-cut-set matrix with oriented graph, tree and also specify twig matrix, link matrix.
- 5 K2 CO1
- 12. a) i. Find the current through j3 Ω for the circuit shown in Fig. 5 6 K2 CO2 using Superposition theorem.

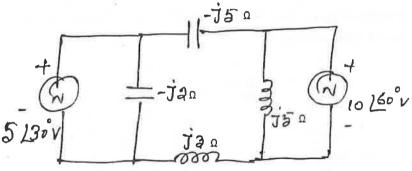


Fig. 5

- ii. With necessary equations explain the following
 - a. Thevenin's theorem.

2 K2 CO

b. Steps to apply Thevenin's theorem and the method to calculate Thevenin's equivalent voltage with necessary circuit.

K2 CO2

(OR)

b) Make use of maximum power transfer theorem for the following circuit 13 K2 CO2 in Fig. 6 to find the maximum power dissipated across Z_L .

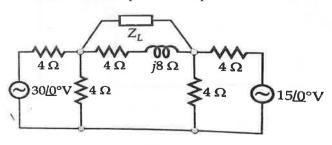


Fig. 6

13. a) i. Find the admittance Y_{AB} for the circuit shown in Fig. 7. The 7 K2 CO3 Supply frequency is 50Hz.

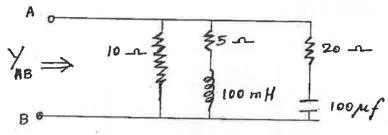


Fig. 7

ii. A current source is applied to the parallel R, L, and C circuit, where $R = 12 \Omega$, L = 2 H and $C = 3 \mu F$. Compute the resonant frequency, quality factor, and bandwidth. Compute the lower and upper cut-off frequencies and the voltage across the parallel elements, when the input signal is $i(t) = 10\sin 1800t$.

CO₃

(OR)

b) i. For the circuit shown in Fig. 8, find the ratio of output voltage V_2 6 K2 CO3 to the input voltage V_1 .

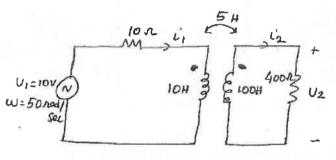


Fig. 8

ii. Find the voltage drop across the capacitor and resistor, as shown 7 K2 CO3 in Fig. 9

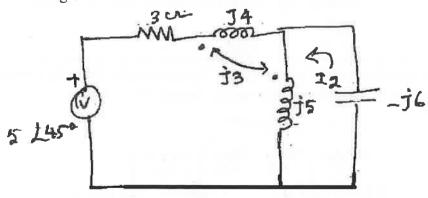
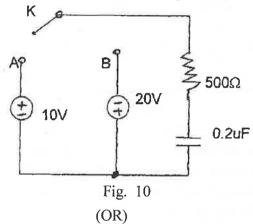



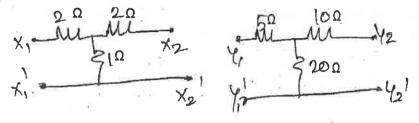
Fig. 9

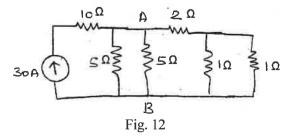
14. a) In the circuit shown in Figure 10, switch K is closed at position A at t = 0. After the lapse of time equivalent to one time constant, the switch is moved to position B. Determine the complete current.

CO₄

- b) Discuss in detail about the transient response of RL, RC and RLC 13 K2 CO4 circuits using Laplace transform with necessary equations.
- 15. a) The Z parameters of a two-port network are Z_{11} =10 Ω , Z_{22} =15 Ω , 13 K2 CO5 Z_{12} = Z_{21} =5 Ω . Interpret h-parameters and ABCD parameters for the network.

(OR)
b) The two networks shown in Fig. 11 are connected in series. Obtain Z 13 K2 CO5 parameters of the combined network.



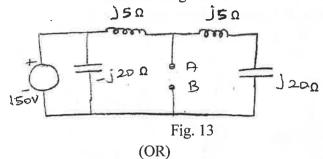

Fig. 11

PART - C

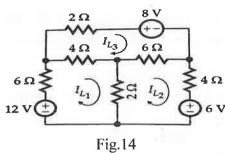
Q.No. Questions (1 x 15 = 15 Marks)

Questions Marks KL CO

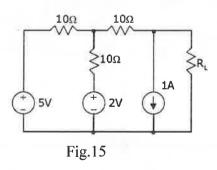
16. a) i. Determine the current through AB in the network shown in 7 K2 CO2 Fig. 12, using Norton's theorem.


ii. Obtain Thevenin's equivalent circuit across the terminals A- 8 K2 CO2 B for the circuit shown in Fig. 13

K2


K2

CO₂


CO₁

b) i. Draw a graph, and determine the number of branches, number of nodes and number of links. Also, Write down the incidence matrix, tieset matrix and cut set matrix for the network, has been shown in Fig. 14.

ii. In the circuit shown in Fig. 15, Determine the value of R_L such that the power is transferred to R_L. Also, determine the maximum power dissipated across R_L.

